The HIV-positive population experiences both external and internal metabolic changes. Abnormal fat distribution, also known as lipodystrophy, occurs in both treated21 and untreated22 HIV-positive patients. It includes two different syndromes: lipoatrophy, or subcutaneous fat loss of face, extremities, and buttocks; and lipohypertrophy, or central fat deposition, manifested as intra-abdominal (visceral) fat, buffalo hump, or breast enlargement. The risk factors for the two abnormal fat distribution syndromes are different. According to the Fat Redistribution and Metabolic Change in HIV Infection (FRAM) study, lipoatrophy can be found in almost 40% of HIV-positive men23 and 30% of HIV-positive women.24 Patients at higher risk to develop lipoatrophy are the ones with lower BMI (body mass index), higher nadir HIV load, and use of ART, especially stavudine, zidovudine, and earlier protease inhibitors (PIs).25 Lipohypertrophy is more common in HIV-positive women than HIV-positive men and in individuals with greater body fat levels to begin with.26
HIV-positive patients with abnormal fat distribution have significantly increased prevalence of dyslipidemia and impaired glucose homeostasis in comparison with HIV-negative controls matched for age and BMI.27 The dyslipidemia associated with HIV infection itself includes elevated triglyceride levels and decreased high-density lipoprotein cholesterol (HDL-C) levels. ART is also a major contributor to dyslipidemia, mainly a more profound elevation of triglycerides with ritonavir-based PI regimens.28 Likewise, both decreased subcutaneous leg fat and increased visceral fat are strongly associated with decreased insulin sensitivity in this population.29 In addition, ART may have an effect on insulin sensitivity, mainly the PIs. One of the mechanisms by which PIs induce insulin resistance is through blocking the transport of glucose by the insulin-sensitive glucose transporter GLUT4.30 A prospective 10-year follow-up of 1,046 ART-treated HIV-positive patients demonstrated an increased incidence of diabetes mellitus in comparison to the general population, and the risk factors were older age, adiposity, and short exposure to the PI indinavir and the nucleoside reverse transcriptase inhibitors (NRTIs) stavudine and didanosine,31 which are mostly not used today in the developed world.
The combination of metabolic and immunologic changes are the base of cardiovascular disease (CVD) in HIV-positive patients.32 In addition to the established risk factors for coronary heart disease (CHD) in the general population, which have been shown to be increased in the HIV-positive population,33 there is additional risk that might be explained in part by both antiretroviral medications and novel CHD risk factors including inflammation and immune dysfunction. The effect of ART was assessed in the Data Collection on Adverse Events of Anti-HIV Drugs (DAD) study, which demonstrated an association between duration of exposure to combination ART and the risk of myocardial infarction, specifically with exposure to PIs.34 In contrast, a large study from the Veteran Affairs (VA) system showed no connection between any ART class and CHD or cerebrovascular event outcomes.
Several surrogate indices of CVD have been tested in HIV-positive patients. A recent study demonstrated an association between immune activation markers and carotid artery plaque in patients virologically suppressed on ART, and another study demonstrated elevated carotid intima-media thickness in all HIV groups versus controls, including elite-controllers (HIV-infected patients who maintain an undetectable HIV RNA by standard assay in the absence of ART).35 The same trend was demonstrated with increased prevalence of subclinical coronary atherosclerosis detected by coronary computed tomography angiography in HIV-infected men in comparison with controls.36
The actual increased risk for CHD and acute myocardial infarction in HIV-positive patients was shown in several studies, which found significantly increased risk ratios up to 1.94 (95% CI 1.58–2.37).37
Renal Complications
The pathogenesis of renal disease in HIV-positive individuals is diverse. It includes: 1) HIV-associated nephropathy (HIVAN), a form of focal segmental glomerulosclerosis that is accompanied by tubuleinterstitial inflammation, and clinically manifests as rapidly progressive renal failure with nephritic range proteinuria. 2) HIV immune complex kidney disease (HIVICK), a collective term that includes IgA nephropathy, membranoproliferative glomerulonephritis, membranous nephropathy, and a lupus-like glomerulonephritis that is serologically negative.
38 3) Hypertensive and atherosclerotic renal disease. 4) ART side-effects, mainly tenofovir-induced renal tubular injury
39 and indinavir/atazanavir-induced crystaluria and renal calculi formation.
40 The first two pathologies are more common in untreated patients, the last two in treated. It has been shown that chronic kidney disease and proteinuria are associated with increased risk of mortality in HIV-positive patients.
41
Bone Mineral Density and Osteoporosis
Several population-based studies in the United States showed increased prevalence of osteoporotic fractures in HIV-infected men and women compared with HIV-uninfected individuals.
42 The etiology of low bone mineral density (BMD) in HIV-positive patients is multifactorial. It includes both traditional, non-HIV-related risk factors such as smoking, alcohol and opiate use, low body weight, and vitamin D deficiency; and also HIV-related factors such as direct viral and inflammatory effects on bone resorption
43,44 and the effects of ART, especially tenofovir.
45 Multiple studies have shown a 2%–6% BMD loss after 48–96 weeks of therapy, regardless of the type of ART initiated.
46 Several longitudinal studies have shown that, with continued ART use, BMD stabilizes over time.
47,48
Neurocognitive Changes
HIV-associated neurocognitive disorder (HAND) is divided into three levels of impairment: asymptomatic neurocognitive impairment, mild neurocognitive disorders, and HIV-associated dementia (HAD). The introduction of ART has reduced significantly the rate of HAD, but unfortunately the effect on less severe forms of impairment is not as impressive. Studies of HAND in treated patients have documented high persisting rates of mild-to-moderate neurocognitive impairment despite effective suppressing antiretroviral treatment,
49 especially in individuals with a history of low nadir CD4s.
50
Frailty Syndrome in HIV-positive Older Adults
Frailty is defined as a syndrome of decreased physiological reserve, which increases vulnerability to negative outcomes such as loss of independence, nursing home admission, morbidity, and mortality.
51 Recent studies demonstrated that HIV-positive individuals are at an increased risk of frailty and that some individuals with HIV manifest frailty characteristics at a much younger age than frail individuals without HIV.
6 In the pre-ART era frailty in HIV was connected to the AIDS-wasting syndrome, with advanced immunosuppression and very high viral loads. In contrast, the current risk factors for frailty in the HIV-positive population is high fat mass, particularly trunkal fat, and high BMI.
52