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ABSTRACT 

Objective: Medical decision-making is often uncertain. The positive predictive value (PPV) and negative 
predictive value (NPV) are conditional probabilities characterizing diagnostic tests and assessing diagnostic 
interventions in clinical medicine and epidemiology. The PPV is the probability that a patient has a specified 
disease, given a positive test result for that disease. The NPV is the probability that a patient does not have 
the disease, given a negative test result for that disease. Both values depend on disease incidence or 
prevalence, which may be highly uncertain for unfamiliar diseases, epidemics, etc. Probability distributions 
for this uncertainty are usually unavailable. We develop a non-probabilistic method for interpreting PPV 
and NPV with uncertain prevalence. 

Methods: Uncertainty in PPV and NPV is managed with the non-probabilistic concept of robustness in 
info-gap theory. Robustness of PPV or NPV estimates is the greatest uncertainty (in prevalence) at which 
the estimate’s error is acceptable.  

Results: Four properties are demonstrated. Zeroing: best estimates of PPV or NPV have no robustness to 
uncertain prevalence; best estimates are unreliable for interpreting diagnostic tests. Trade-off: robustness 
increases as error increases; this trade-off identifies robustly reliable error in PPV or NPV. Preference 
reversal: sometimes sub-optimal PPV or NPV estimates are more robust to uncertain incidence or 
prevalence than optimal estimates, motivating reversal of preference from the putative optimum to the sub-
optimal estimate. Trade-off between specificity and robustness to uncertainty: the robustness increases as 
test-specificity decreases. These four properties underlie the interpretation of PPV and NPV. 
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Conclusions: The PPV and NPV assess diagnostic tests, but are sensitive to lack of knowledge that gener-
ates non-probabilistic uncertain prevalence and must be supplemented with robustness analysis. When 
uncertainties abound, as with unfamiliar diseases, assessing robustness is critical to avoiding erroneous 
decisions. 
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PLAIN LANGUAGE SUMMARY 

Clinical decision-making is a complex interplay of 
determinants that balances physicians’ knowledge of 
pathophysiology, the clinical situation, and the 
effectiveness of data adduced to support the deci-
sion. Among the commonly available statistical tools, 
positive and negative predictive values are among 
the most valuable and commonly available. The posi-
tive predictive value (PPV) of a diagnostic test an-
swers the question: what is the probability that a 
positive test result for a specific disease indicates the 
presence of that disease? The PPV is a conditional 
probability: the probability that the person is actual-
ly sick with a specific condition given a positive diag-
nostic test result for that condition; it is the proba-
bility of a “true positive.” Conversely, the negative 
predictive value (NPV) of a test is the conditional 
probability that the person is not sick with a speci-
fied disease, given a negative diagnostic test result 
for that disease; it is the probability of a “true nega-
tive.” Importantly, the PPV and NPV both depend 
on an estimate of the prevalence of the disease, 
which is often quite uncertain, variable from popula-
tion to population, and a prominent confounder in 
new or emerging diseases and early in pandemics. 

Clinical and public health decision-makers face a 
fundamental challenge when using PPV or NPV to 
assess test results. They must make consequential 
decisions and recommendations, rarely having the 
depth or breadth of evidence that they desire. They 
depend on optimal NPV or PPV estimates, either di-
rectly or implicitly, in trying to optimize the quality 
of the decision or recommendation. Benefit can come 
in the form of a felicitous outcome of diagnosis lead-
ing to treatment or even preservation of lives by pub-
lic health intervention in the face of an emerging 
pandemic. This benefit is what decision-makers want 
when making a decision that they consider optimal. 
But, sadly, the benefit of such a strategy is illusory 
because of the uncertainty in the underlying preva-
lence estimates of PPV and NPV. When decision-
makers employ optimal estimates of PPV and NPV, 
they ignore this uncertainty.  

Optimizing PPV and NPV estimates ignores un-
certainty in the prevalence. A better strategy is less 
sensitively dependent on optimization and is robust 
against this uncertainty. In this strategy, the out-
come that emerges may not be the best that can be 
imagined, or even the best that can be practically ob-
tained, but it is one that can be confidently achieved 
despite uncertainty. Rather than relying on the puta-
tively optimal PPV and NPV estimates, the clinician 
optimizes the robustness to uncertainty in those esti-
mates, while still achieving a medically meaningful 
path. This strategy, seeking robustness to uncertain-
ty, is counter-intuitive for the clinician who is trained 
to provide the “best” to the patient. However, which 
person with an illness would not trade certainty for 
an ephemeral and unreliable “best” outcome? 

Four major properties characterize robustness to 
uncertainty rather than relying on the misleading 
optimization. They are zeroing, trade-off, preference 
reversal, and antagonism between specificity and 
robustness.  

Zeroing asserts that optimized PPV or NPV esti-
mates have no robustness to uncertainty in preva-
lence since optimal estimates maximally exploit all 
evidence, whether or not the evidence is correct or 
erroneous. Asserting that putatively optimal esti-
mates have no robustness to uncertainty is contrary 
to standard thinking that the best estimates of un-
derlying parameters (for example, prevalence) yield 
best estimates of functions dependent on those pa-
rameters, such as PPV and NPV. The subtle fallacy 
in this intuition is embodied in the presumption that 
the best estimate of prevalence will yield the best 
immunity to error in that estimate. Immunity to 
error in the estimate—robustness to uncertainty—is 
distinct from the estimate itself; optimizing one does 
not optimize the other.  

This distinction is demonstrated by the second 
property: trade-off between robustness and error. 
Robustness to uncertainty increases (which is desir-
able) as error of the estimate increases (which is un-
desirable). Thus, robustness curves can be devel-
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oped that enable specifying the level of PPV or NPV 
that will not be exceeded despite a significant error 
in the estimated prevalence. For instance, requiring 
zero error in PPV has zero robustness to uncertainty 
in prevalence. However, requiring a PPV error no 
greater than 0.3 is achieved with robustness to twice 
the estimated error in prevalence. This trade-off 
makes the consequences of optimization patently 
clear to the decision-maker.  

If evidence underlying the PPV and NPV esti-
mates is reliable, then optimal estimates of these 
parameters are also reliable. This is unusual in real-
world situations where a subject population is al-
most certainly different from the population from 
which the evidence for a test is derived. Examples of 
this abound in the medical literature (e.g. “normal” 
hemoglobin values ignore the altitude at which the 
tested subject lives;1 and recent controversies in cal-
culated creatinine clearance emphasize the impor-
tance of ethnicity, obscured in a large population2). 
However, if uncertainty is large, then sub-optimal 
estimates may be preferred over putatively optimal 
estimates. This is the third property: preference 
reversal. Preference reversal between optimal and 
sub-optimal estimates arises when sub-optimal esti-
mates are more robust to uncertainty than the puta-
tive optima. This demonstrates how the robustness 
strategy helps the decision-maker. For instance, 
suppose that the putatively optimal PPV estimate is 
0.61. This is the value to use if uncertainty is low or 
absent. However, this estimate has no robustness to 
uncertainty (the zeroing property). A specific exam-
ple shows that, given the prevalence uncertainty, 
then an estimate of 0.46 for the PPV is substantially 
robust to this uncertainty. This demonstrates a re-
versal of preference between the putatively optimal 
estimate (0.61) and a sub-optimal estimate (0.46) to 
obtain robustness against uncertain prevalence.  

Finally, we demonstrate the fourth property: a 
trade-off between specificity and robustness to 
uncertainty in prevalence: robustness increases as 
specificity decreases. This provides an additional 
tool for the decision-maker. 

Although incorporating these four properties 
into the use of NPV and PPV in medical decision-
making appears complex, failure to do so can lead to 
a loss of confidence in the decision and, at worst, 
erroneous decisions. Herein we demonstrate how 
the consideration of robustness to uncertainty can 
be explicitly incorporated into medical use of PPV 
and NPV estimates when data are sparse or uncer-

tain. The decision-maker enters the process armed 
with a new tool allowing the explicit recognition of 
uncertainty. That uncertainty becomes less obscure 
and more manageable. 

INTRODUCTION 

Regardless of whether an individual is affected as in 
patient-focused medical care or a community as in 
public health, decision-making is characterized by 
severe uncertainty. The decision-maker always de-
sires more information than is available. The SARS-
CoV-2 pandemic highlighted this conundrum with 
uncertainties in diagnosis, clinical course, and treat-
ment, confounding medical decision-makers and re-
sulting in incomplete and often contradictory pro-
nouncements by public health authorities. Simple 
questions as to whether masks were effective in 
interrupting viral transmission provoked incorrect 
and misleading advice with ramifications through-
out the population leading to a distrust of health 
authorities.3 

Health professionals need to make decisions with 
available evidence, even when it is incomplete and 
perhaps faulty. During the pandemic, a key metric 
was the incidence of disease, yet early efforts at mass 
testing in the United States failed due to a faulty 
reagent and delay in certifying clinical laboratories.4  

In order for a test to be useful in decision-making 
during an emerging epidemic both the positive and 
negative predictive value of the test need to be 
known. But in the onset of an epidemic of a novel 
pathogen such as SARS-CoV-2, the incidence of the 
disease will be highly uncertain. This uncertainty 
results from variability of penetration of the patho-
gen into the community and variability among com-
munities. Additionally, the false positive and false 
negative features of a diagnostic test may be only 
estimated. Finally, the penetration of the test into 
the community may be variable as a function of 
social determinants of health, particularly early in 
the epidemic.5  

The behavior of the candidate virus strain con-
tributes another uncertainty. In many respiratory 
viruses, SARS-CoV-2 included, substantial transmis-
sion originates in asymptomatic infected individ-
uals. Other confounding variables include viral load, 
influenced by previous exposure or immunization, 
where test sensitivity may be reduced.6,7  

These uncertainties result from a lack of knowl-
edge of which probability distributions are unavail-
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able. Yet decisions have to be made. Despite the 
presence of severe uncertainty, the public’s health is 
served by cautious but resolute decision-making that 
can be backed up by invoking the evidence with as 
much strength as the evidence allows. To that end, 
both positive and negative predictive values must be 
considered in light of the non-probabilistic uncer-
tainty of available evidence. The non-probabilistic 
concept of info-gap robustness will provide a meth-
od for interpreting both the positive predictive value 
(PPV) and the negative predictive value (NPV). 

The PPV of a diagnostic test answers the ques-
tion: what is the probability that a positive test 
result for a specific disease indicates the presence of 
that disease in the tested individual? The PPV is a 
conditional probability: the probability that a person 
is sick with a specific disease given that the person’s 
test for that disease is positive; it is the probability 
of a true positive. The NPV of a test is the condi-
tional probability that the person is not sick with a 
specified disease, given a negative diagnostic test 
result for that disease;8 it is the probability of a true 
negative. The PPV and NPV are not themselves diag-
nostic tests; rather, they characterize diagnostic tests. 
Taken together, PPV and NPV assess “the probabil-
ity that the test will give the correct diagnosis.”9  

If a test’s PPV is high, then clinical intervention 
may be indicated for people whose results from that 
test are positive. Similarly, if a test’s NPV is high, 
then intervention may be counter-indicated for peo-
ple with negative results from that test. However, 
both PPV and NPV depend on the incidence or 
prevalence of the disease, which may be quite un-
certain. Hence, the concept of robustness, as devel-
oped in info-gap theory, can be used for decision-
making under this uncertainty.10,11  

Uncertainty in incidence or prevalence can 
strongly impact the interpretation of a diagnostic 
result. For instance, Saraceni et al.12 studied fecal 
occult blood tests for detecting colorectal cancer. 
Using sensitivity and specificity of 66.7% and 62.3%, 
respectively, and a prevalence of 10% (Saraceni et 
al.), one calculates that the PPV was 16%, indicating 
that a positive test result signaled a 16% chance that 
cancer was actually present. This is fairly low, so a 
positive occult blood test may only lead to watchful 
waiting. However, if the prevalence was 20%, then 
the PPV would be 31% and colonoscopy may be 
indicated. Looking at a positive test, we find that 
moderately small variations in prevalence can have 
substantial clinical implications of a positive test. 

Analogous clinical reversals occur for NPV with a 
prevalence of 90% versus 80%. 

Zou13 provided a method for calculating the sta-
tistical confidence interval (CI) for PPV and NPV 
and demonstrated CI utility. Info-gap robustness is 
analogous to, but different from, a statistical CI. 
Info-gap robustness is the greatest range of uncer-
tainty within which a decision (e.g. a PPV or NPV 
value) is acceptable or yields the same clinical impli-
cation. Info-gap robustness is non-probabilistic and 
independent of knowledge of probability distribu-
tions or other probabilistic assumptions (e.g. statis-
tical independence). Info-gap robustness is relevant 
when probabilistic models are lacking. Also, info-
gap robustness is evaluated for a particular choice of 
the PPV or NPV value and thus can be used to select 
between alternative choices of that value. 

Why is incidence or prevalence uncertain? Sensi-
tivity and specificity of a diagnostic test are known 
reasonably well, though Manski14 noted some uncer-
tainty associated with these values. In contrast, 
incidence or prevalence may be highly uncertain. 
Covid-19 incidence could range from 0.017 to 0.618. 
Statistical uncertainty in incidence or prevalence 
may derive from limited sampling, or from false 
negatives or false positives (if sensitivity or speci-
ficity, respectively, is less than unity). Estimated 
incidence or prevalence is uncertain for unfamiliar 
diseases or evolving epidemics with uncertain dy-
namics, a complex pathology unique to the individ-
ual, or mutating viral diseases, non-random sam-
pling, heterogeneous population, non-stationarity, 
and general ignorance about the extent of infection. 
Finally, incidence or prevalence is usually estimated 
by diagnostic testing. This is uncertain because the 
diagnostic test is usually not identical to the disease, 
but only indicative. These situations derive from a 
lack of knowledge and generate non-probabilistic 
uncertainty for which info-gap robustness provides 
a response. 

The following sections will mathematically define 
PPV and NPV, explore the info-gap robustness to 
uncertain incidence or prevalence, and then provide 
conclusions regarding the analysis. 

DEFINITIONS 

The prevalence is the probability that the disease is 
present in an individual chosen randomly from the 
population. Its value, π, is highly uncertain, but the 
best estimate is 𝜋𝜋� . 
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The sensitivity of the test, denoted σ, is the con-
ditional probability of a positive test result for a 
person, given true presence of the disease in that 
person. Thus, σ is a property of the test, and its 
value is reliably known. 

The specificity of the test, denoted ψ, is the 
conditional probability of a negative test result for a 
person, given true absence of the disease in that 
person. Thus, ψ is a property of the test, and its 
value is reliably known. 

The positive predictive value (PPV) of the test is 
the conditional probability that the disease is actual-
ly present in a tested person, given a positive test 
result for that person. 

The negative predictive value (NPV) of the test is 
the conditional probability that the disease is actual-
ly not present in a tested person, given a negative 
test result for that person. 

From Bayes’ law and the definition of complete 
probability we can relate PPV to prevalence, sensi-
tivity, and specificity: 
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Uncertainty in prevalence, π, causes uncertainty 
in PPV and NPV. We assess robustness to that un-
certainty and draw operational conclusions. 

PPV ROBUSTNESS TO UNCERTAINTY IN 
THE PREVALENCE 

Formulation of Info-Gap Uncertainty and 
Robustness 
The best estimate of π is 𝜋𝜋� , for which an error esti-
mate is ws, where ws is a contextual judgment of 
error, not a maximum possible error. For instance, 
expert judgment may be: “The prevalence equals 
about 0.15, but may err by about thirty percent or 
more.” Thus 𝜋𝜋�=0.15 and ws=0.005. We stress that 
ws is not an upper bound on the error of the esti-

mate, but only a rough calibration of the error. The 
actual error may be greater or less than ws. 

We quantify this non-probabilistic uncertainty in 
the prevalence with an info-gap model of uncer-
tainty, U(h),9 defined in the supplementary material. 
U(h) is the set of all prevalence values, π, whose 
deviation from the estimate, 𝜋𝜋�, relative to the error 
estimate ws, is no greater than the value h. However, 
the value of h is unknown. Thus the info-gap model 
is not a single set of π values, but rather an un-
bounded family of nested sets of π values. Each set 
is specified by the value of h, which is a parameter 
taking any non-negative value. The set U(h) is a 
bounded interval of π values. The sets U(h) become 
more inclusive as h increases, giving h its meaning 
as the horizon of uncertainty. Each set is bounded, 
but the family of all such sets is unbounded. We 
stress that the info-gap model does not presume 
knowledge of a worst case. U(h) is called a 
fractional-error info-gap model of uncertainty. 

The estimated conditional probability of true 
disease, that is, the estimate of PPV with the esti-
mated prevalence, 𝜋𝜋� , is denoted PPV. This is the 
putative optimal estimate of PPV. 

Let PPVe denote an expert’s estimate of PPV. 
This could be PPV, or it could be any other value 
based on the expert’s judgment. We will evaluate the 
robustness to uncertainty of various choices of PPVe, 
and use the robustness to indicate when PPV should 
be chosen as PPVe and when a different value is 
preferable. 

We require that the expert’s estimate, PPVe, dif-
fer from the true (but unknown) conditional proba-
bility, PPV, no more than ε: 

e  PPV PP   V e- £
 

That is, ε is the greatest acceptable error in the 
expert’s estimate of the conditional probability of 
disease given a positive result in the diagnostic test. 
Recall that the unknown true value of PPV depends 
on the uncertain prevalence, as stated in Eq. (1). 

The PPV robustness to this uncertainty is the 
greatest horizon of uncertainty, h, up to which all 
realizations of the true prevalence, π, cause the esti-
mate, PPVe, to err no more than ε. The robustness is 
defined mathematically in the supplementary mate-
rial. 

Eq. (1) 

Eq. (2) 

Eq. (3) 

https://www.rmmj.org.il/userimages/1831/1/PublishFiles/1879ArticleAM.pdf
https://www.rmmj.org.il/userimages/1831/1/PublishFiles/1879ArticleAM.pdf
https://www.rmmj.org.il/userimages/1831/1/PublishFiles/1879ArticleAM.pdf
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The robustness depends on the expert judgment 
of the PPV, the value PPVe. The robustness, 
however, does not depend on the true value of the 
PPV. As we will see, we can evaluate the robustness 
to uncertainty without ever knowing the correct 
PPV. A large value of robustness implies that the 
corresponding value of PPVe is acceptably accurate 
over a wide range of uncertainty in prevalence. 
Conversely, a small value of robustness implies that 
this value of PPVe is not reliable for interpreting the 
test. The PPV robustness is derived in section A of 
the supplementary material. 

Numerical Example 
We now discuss PPV robustness curves with the 
symmetric fractional-error info-gap model. We will 
explain the concepts of zeroing, trade-off of robust-
ness versus error, and preference reversal among 
PPV estimates. We will also explore the trade-off 
between sensitivity and specificity, and between 
specificity and robustness. 

In our numerical example, we assume that sensi-
tivity, σ, and specificity, ψ, each equal to 0.9. The 
estimated prevalence is 𝜋𝜋�=0.15 with uncertainty 
weight ws=0.05. The putative optimal estimate of 
PPV is PPV=0.61. We consider three alternative 
expert judgments, PPVe, equal to 0.46, 0.61, and 
0.77, where the lower and upper values are about 
25% less and 25% more than the putative best esti-
mate, which is 0.61. 

Zeroing 
The best estimate of the prevalence is 𝜋𝜋�, and the 
corresponding best estimate of the PPV is based on 
this estimated prevalence. The zeroing property 
asserts that predicted outcomes—estimated PPV in 
the present application—have zero robustness to 
uncertainty in the data upon which they are based. 
In Figure 1, the predicted error—the deviation be-
tween the true and the best-estimated prevalence—
is zero (horizontal intercept); that is, the predicted 
PPV is presumably reliable. However, the robust-
ness of this predicted error—to uncertainty in the 
prevalence—is also zero (vertical intercept). A pre-
diction (best PPV estimate) has no robustness to 
uncertainty in data upon which the prediction 
depends. This is significant because we usually treat 
evidence-based predictions as the basis for a deci-
sion. However, if the evidence (the value of preva-
lence in the present situation) is uncertain, then the 
predicted estimate has no immunity against that 
uncertainty and would be an unreliable basis for 

decision-making. We now proceed to identify reli-
able estimates of the PPV. 

Trade-off: robustness versus error 
The trade-off property asserts that the robustness, 
ℎ�PPV(𝜀𝜀), increases (gets better) as the maximum 
acceptable error of the estimate is relaxed (ε in-
creases). This is displayed by the positive slope of 
the robustness curve in Figure 1. The robustness of 
the predicted error is zero (the zeroing property), 
while increasingly positive robustness is obtained by 
allowing increasingly greater prediction error, ε. 

For example, in Figure 1 we see that ℎ�PPV(𝜀𝜀) =
1.5 if ε=0.20. This means that the estimated PPV 
will err no more than ±0.20 for all values of the 
prevalence, π, in the interval 𝜋𝜋� ± 1.5𝑤𝑤𝑠𝑠. This is 
rather low robustness because the initial judgment 
was that 𝜋𝜋�  could err by ±ws or more. Hence this 
estimated PPV is not a reliable basis for decision. 
Greater robustness is obtained by allowing greater 
error in the prediction, for any value up to the 
estimated PPV, which is 0.61. Estimated error equal 
to or greater than 0.61 is meaningless because it im-
plies that the PPV is between 0 and 1 which is true of 
any probability value. Up to this estimated error, the 
robustness trades off against the estimated error: 

 
Figure 1. PPV Robustness Function. 
The sensitivity, σ, and the specificity, ψ, each take the 
value 0.9. The estimated prevalence, 𝜋𝜋�, is 0.15, and 
the estimated error of 𝜋𝜋� is ws=𝜋𝜋�/3. The expert estimate 
of the positive predictive value, PPV, is denoted PPVe. 
The acceptable error of this estimate is ε. 

σ=ψ=0.9, 𝜋𝜋�=0.15, ws=𝜋𝜋�/3. 

https://www.rmmj.org.il/userimages/1831/1/PublishFiles/1879ArticleAM.pdf
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greater error (which is undesirable) has greater 
robustness to uncertainty (which is desirable). 

Preference reversal 
Figure 2 shows robustness curves for three different 
values of the expert judgment of the conditional 
probability of disease, PPVe: the putative estimate 
reproduced from Figure 1 (solid curve), and lower 
and greater values. The robustness curves in Figure 
2 show intersection between two of them. We see 
that the robustness of the sub-optimal estimate 
PPVe=0.46 exceeds the robustness of the putative 
optimum, PPV=0.61, when ε exceeds 0.29. 

This demonstrates the phenomenon of reversal 
of preference between options. The putative 
estimate, PPV=0.61, is based on the available data 
and is nominally to be preferred for clinical 
decision-making over any other estimate. However, 
the estimate PPV=0.46 may be preferred at larger ε 
because it is more robust to uncertainty than PPV. 
Consideration of robustness to uncertainty can 
result in a reversal of preference from the putative 
optimum to a sub-optimal but more robust estimate. 

Trade-off: sensitivity versus specificity 
From the expression for PPV in Eq. (1) we see that 
sensitivity, σ, trades off against specificity, ψ, at 
constant PPV. That is, if σ increases then ψ must 
decrease to keep the PPV constant, and vice versa. 
The same trade-off between sensitivity and speci-
ficity, at fixed NPV, is seen in Eq. (2). Loh et al.15 ex-
plore these trade-offs in depth, stressing their impor-
tance for selecting a diagnostic test for clinical use. 
They demonstrate that the numerical strength of the 
trade-off depends on prevalence of the disease. We 
consider a variation of this analysis based on consid-
eration of robustness to uncertainty in prevalence. 

Figure 3 shows the trade-off between sensitivity, 
σ, and specificity, ψ, when PPV robustness is held 
constant. The nominal estimate of positive predic-
tive value, PPV, depends on both σ and ψ and thus 
varies throughout the (σ,ε) plane. The robustness at 
each point is evaluated at PPVe=0.75 PPV. The 
estimated prevalence is 𝜋𝜋�=0.01, and the acceptable 
error of the PPV estimate is ε=0.05. We first explain 
the construction and meaning of these curves, and 
then draw an important conclusion. 

 
Figure 2. PPV Robustness Functions. 
The sensitivity, σ, and the specificity, ψ, each take the 
value 0.9. The estimated prevalence, 𝜋𝜋�, is 0.15, and 
the estimated error of 𝜋𝜋� is ws=𝜋𝜋�/3. The expert estimate 
of the positive predictive value, PPV, is denoted PPVe. 
The acceptable error of this estimate is ε. 

σ=ψ=0.9, 𝜋𝜋�=0.15, ws=𝜋𝜋�/3. 

 
Figure 3. Curves of Constant PPV Robustness. 
The sensitivity, σ, and the specificity, ψ. The estimated 
prevalence, 𝜋𝜋�, is 0.01, and the estimated error of 𝜋𝜋� is 
ws=𝜋𝜋�/3. The expert estimate of the positive predictive 
value, PPV, is denoted PPVe=0.75 PPV. The acceptable 
error of this estimate is ε=0.05. The robustness to 
uncertainty is denoted ℎ�. 

𝜋𝜋�=0.01, ws=𝜋𝜋�/3, ε=0.05, PPVe=0.75 PPV at each (σ,ψ) 
point. 
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Each curve in Figure 3 shows that specificity 
decreases slightly as sensitivity increases relatively 
more, while robustness is held constant. This de-
rives from the trade-off in the expression for the 
PPV studied by Loh et al. However, the meaning 
here is different. In Figure 3 the PPV changes along 
each curve, unlike in Loh et al., who presented curves 
of constant PPV. Also, robustness assesses immunity 
to uncertainty in prevalence, while Loh et al. assumed 
that prevalence is known. Furthermore, the robust-
ness assesses the immunity to uncertainty in prev-
alence, for an estimated PPVe, which differs from the 
putative optimum, PPV. 

Trade-off: specificity versus robustness 
The curves in Figure 3 move down as the robustness 
increases. That is, at fixed sensitivity, σ, the speci-
ficity, ψ, must be reduced in order to increase the 
robustness, with all other parameters at their pres-
ent values. The test is more immune to uncertainty 
in prevalence at lower specificity, for the range of 
values considered. This may be counter-intuitive at 
first. However, specificity is the probability of a 
negative test result from a healthy individual. Here, 
a very low estimated prevalence is being considered, 
so most tests are negative. Lowering the specificity 
will increase the rate of false positives, which simu-
lates the effect of lower prevalence and thus com-
pensates for the uncertain possibility that preva-
lence is higher than estimated. In this way, lower ψ 
increases the robustness to uncertain prevalence at 
fixed σ, when prevalence is very low and the other 
parameters are at their present values. 

A dilemma is faced when choosing a specificity 
value if the estimated prevalence is low. On the one 
hand, high specificity is an inherently desirable 
attribute of a diagnostic test, partly because the 
estimated PPV increases as specificity increases, as 
shown in Eq. (1). On the other hand, robustness to 
uncertainty in prevalence is also desirable because it 
enhances confidence in the estimate, but robustness 
decreases as specificity increases when the estimated 
prevalence is low. One approach to resolving this 
dilemma begins by choosing an acceptable error in 
estimating the PPV, for example ε=0.05 or 0.10. One 
then chooses the largest specificity, ψ, for which the 
corresponding robustness to uncertainty, ℎ�PPV(𝜀𝜀) , is 
large enough to instill confidence in the PPV.  

Relative impact on PPV robustness of 
sensitivity versus specificity 
Sensitivity, σ, has much lower impact on PPV 
robustness than specificity, ψ, if both are fairly close 
to unity. This is because the PPV depends far more 
strongly on ψ than on σ for relevant parameter 
values, as seen by the following relation. Using the 
expression for the PPV in Eq. (1), one finds: 

PPV /
PPV / 1

y s
s y

¶ ¶
=

¶ ¶ -  

For example, this ratio equals 9 if σ=ψ=0.9 and 
approaches infinity as ψ approaches unity for any 
fixed positive value of σ. 

NPV ROBUSTNESS TO UNCERTAINTY IN 
THE PREVALENCE 

An expression for NPV robustness can now be 
developed, and its implications studied, in analogy 
to the section “PPV Robustness to Uncertainty in the 
Prevalence” (page 5). Here again the symmetric 
fractional-error info-gap model is used. 

Formulation of Info-Gap Robustness 
The estimated conditional probability of no disease 
given a negative test result, that is, the putative best 
estimate of NPV based on estimated prevalence, 𝜋𝜋�, 
is, from Eq. (2):  



(1 )
1

NPV y
py s

p

=
+ -

-
%

%   

Let NPVe denote an expert’s judgment of the val-
ue of NPV. This could be NPV or any other value. In 
analogy to Eq. (3) the performance requirement is:  

e  NPV N V P e- £
  

The term ε is the greatest acceptable error in the 
expert judgment, NPVe, of the conditional probabil-
ity that the individual is free of disease, given a 
negative test result. Recall that the unknown true 
value of NPV depends on uncertain prevalence, as 
stated in Eq. (2). 

Eq. (4) 

Eq. (5) 

Eq. (6) 
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The NPV robustness is the greatest horizon of 
uncertainty, h, up to which all realizations of the 
true prevalence, π, cause the judgment, NPVe, to err 
no more than ε, defined mathematically in the 
supplementary material. This is the NPV analog of 
the PPV robustness defined earlier. The NPV robust-
ness is derived in section B of the supplementary 
material. 

Numerical Example 
Now a numerical example of NPV robustness with 
the fractional-error info-gap model is discussed. 
Sensitivity and specificity values of σ=ψ=0.9 are 
assumed. The estimated value of prevalence is 𝜋𝜋� =
0.15, with an uncertainty weight of ws=0.05. 

The best estimate of NPV, with these coefficients, 
is NPV=0.98. This is the estimated probability that a 
person, whose diagnostic test was negative, is in fact 
free of disease. This is an encouragingly large value, 
though we must now consider robustness to 
uncertainty in prevalence. Figure 4 shows NPV 
robustness curves for three values of the expert’s 
judgment of the NPV: NPVe=0.93, 0.98 (which is 
the putative estimate, NPV), and 1.00.    

Cost of robustness 
A distinctive feature of the robustness curves in 
Figure 4 is their steep slope at low values of ε. The 
steep slope implies a low cost of robustness: the 
robustness increases greatly by increasing the 
allowed error, ε, only slightly. For instance, the 
robustness for the estimated NPV increases from 
ℎ�NPV(𝜀𝜀) = 0 to ℎ�NPV(𝜀𝜀) = 5.0 as ε increases from 0 to 
0.05. A robustness of 5.0 means that the true preva-
lence can deviate from its estimated value by ±5.0ws 
(subject to non-negativity) and the true NPV will 
deviate from its estimate by no more than 0.05. This 
NPV value is a reliable basis for decision. 

Preference reversal 
Figure 4 shows that NPVe=0.98 is robust dominant 
over NPVe=1 throughout the range of the figure. In 
contrast, comparison of NPVe=0.93 and NPVe=0.98 
shows a reversal of preference, depending on the 
allowed error, ε: NPVe=0.98 is more robust than 
NPVe=0.93 at low ε, and the robustness-based pref-
erence is reversed at larger ε. It is significant that 
this robust preference for the sub-optimal estimate, 
NPVe=0.93, occurs at fairly low error, ε. This is 
different from the preference reversal in the PPV 
robustness example in Figure 2, which occurs at 
larger ε. 

Nonetheless, the putative estimate, NPV=0.98, 
has large robustness at quite small ε and can there-
fore provide a reliable basis for evaluating the diag-
nostic test. This large probability of absence of dis-
ease, given a negative test result, would seem to 
strongly support refraining from medical interven-
tion for a patient whose test result is negative. More-
over, this example demonstrates that the clinician 
can rely on the putative estimate, NPV. This is un-
like the PPV (in this example) where expert judg-
ment, PPVe, should perhaps prevail over the puta-
tive estimate, PPV. 

Robustness of NPV and PPV 
The PPV is less robust to uncertainty in prevalence 
than NPV, when the prevalence is low; the situation 
is reversed when prevalence is high. 

Relative impact on NPV robustness of 
sensitivity versus specificity 
We saw that sensitivity, σ, has much lower impact 
than specificity, ψ, on PPV robustness. The situation 
is reversed when considering NPV robustness. 
However, in any case NPV is much less sensitive 
than PPV to change in either σ or ψ. 

 
Figure 4. NPV Robustness Functions. 
The sensitivity, σ, and the specificity, ψ, each take the 
value 0.9. The estimated prevalence, 𝜋𝜋�, is 0.15, and 
the estimated error of 𝜋𝜋� is ws=𝜋𝜋�/3. The expert estimate 
of the negative predictive value, NPV, is denoted NPVe. 
The acceptable error of this estimate is ε. 

σ=ψ=0.9, 𝜋𝜋�=0.15, ws=𝜋𝜋�/3. 

https://www.rmmj.org.il/userimages/1831/1/PublishFiles/1879ArticleAM.pdf
https://www.rmmj.org.il/userimages/1831/1/PublishFiles/1879ArticleAM.pdf
https://www.rmmj.org.il/userimages/1831/1/PublishFiles/1879ArticleAM.pdf
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CONCLUSION 

Positive predictive value (PPV) and negative predic-
tive value (NPV) are conditional probabilities that 
characterize any specific diagnostic test. The PPV is 
the probability that a tested patient is ill with a 
specified disease, given a positive test result for that 
disease; NPV is the probability that a tested patient 
is not ill with a specified disease, given a negative 
test result for that disease. Both values depend on 
disease prevalence, which may be quite uncertain for 
many reasons. Consequently, PPV and NPV values 
evaluated with the best estimate of prevalence may 
err substantially and be an unreliable basis for 
evaluating the test. 

This paper focused on modeling and managing 
uncertainty in PPV and NPV resulting from uncer-
tain prevalence. Our analysis employed robustness 
to uncertainty as developed in info-gap theory, 
motivated by situations when probability distribu-
tions are lacking. We demonstrated four properties 
of interpreting PPV and NPV values resulting from 
uncertain prevalence, underlying the interpretation 
of PPV and NPV values. 

Zeroing asserts that best PPV or NPV estimates 
lack robustness to uncertainty in prevalence at zero 
estimation error. This means that best estimates 
may not be reliable for interpreting positive or 
negative test results.  

This was demonstrated by the trade-off between 
robustness and error: robustness increases (which is 
desirable) as error increases (which is undesirable). 
This trade-off was manifested by the positive slopes 
for the robustness curves in Figures 1, 2, and 4. Ro-
bustness curves enable the investigator to identify the 
level of PPV or NPV error that will not be exceeded 
despite great error in the estimated prevalence.  

The solid and dashed curves in Figure 2 displayed 
the phenomenon of preference reversal between 
optimal and sub-optimal estimates. At low values of 
acceptable error, ε, we see that the putative esti-
mate, PPV=0.61, is more robust and hence preferred 
over the sub-optimal estimate PPVe=0.46. However, 
if larger ε is acceptable, or if greater robustness to 
uncertainty is required, then PPVe=0.46 is robust-
preferred over PPV=0.61. Neither PPV estimate is 
robust dominant over the other; the preference be-
tween them is reversed as requirements change. 
This potential for reversal of preference is manifest-
ed in the intersection between the robustness curves 
of the alternative estimates of PPV. In contrast, 

PPV=0.61 is robust dominant over PPV=0.77; their 
robustness curves do not cross one another. 

Finally, a trade-off between specificity and ro-
bustness to uncertainty in prevalence was demon-
strated: robustness increases as specificity decreases. 
This may justify using tests with less than maximal 
specificity, in order to counter the adverse impact of 
uncertain prevalence. 

Taken together, these four properties, employed 
in the examples herein, can improve individual-
patient decision-making as well as community-
based policy-making by pointing toward a method-
ology that provides medically meaningful outcomes 
robust to uncertainty. While it may not be the best 
possible outcome conceived or obtainable, it will 
reliably “get the job done.” Refocusing decision-
making on what can be rather than on what might 
be is a useful and reliable pathway for both 
individual patient care and for policy-making. 
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